Algpath: A Software for Certified Algebraic Path Tracking

Alexandre Guillemot & Pierre Lairez MATHEXP, Université Paris–Saclay, Inria, France

Jncf 2025 March 11, 2025 | Cirm, Marseille, France

Ínnía-

F. Parametrized polynomial system

Homotopy continuation

Input: F_{\bullet}

Introduction

Point in \mathbb{C}^n $F_0(x_0) = 0$

Parametrized polynomial system

Homotopy continuation

Input: F_{\bullet} , x_0

Introduction

Unique continuous extension $F_t(x_t) = 0, \quad \forall t \in [0, 1]$

Parametrized polynomial system

Homotopy continuation

Input: F_{\bullet} , x_0

Introduction

Unique continuous extension $F_t(x_t) = 0, \quad \forall t \in [0, 1]$

Parametrized polynomial system

Homotopy continuation

Input: F_{\bullet} , x_0

Output: x_1

Algpath computational model

Algpath is a mixed precision, certified, predictor corrector loop, homotopy continuation implementation (based on interval arithmetic).

Algpath computational model

Algpath is a mixed precision, certified, predictor corrector loop, homotopy continuation implementation (based on interval arithmetic).

Previously...

Implemented using fixed precision, aborting computation when more precision is needed.

🗘 Fast

Cannot tackle numerically challenging problems

Algpath computational model

Algpath is a mixed precision, certified, predictor corrector loop, homotopy continuation implementation (based on interval arithmetic).

Previously...

Implemented using fixed precision, aborting computation when more precision is needed.

Fast

Cannot tackle numerically challenging problems

Update

Implements mixed precision.

- Wraps Arb¹ for the adaptive precision arithmetic.
- Has little overhead over the previous implementation.

¹F. Johansson. "Arb: efficient arbitrary-precision midpoint-radius interval arithmetic"

A Need to switch between two different interval arithmetics

A Need to switch between two different interval arithmetics

A Ensure a very small overhead

A Need to switch between two different interval arithmetics

A Ensure a very small overhead

Implement it in rust (statically typed)

Benchmarks

			HomotopyContinuation.jl ²			Algpath		
name	dim.	max. deg.	time (s)	failures	max. steps	time (s)	max. prec	max. steps
dense	1	1000	12		100	19 min	59	17 k
dense	1	2000	50	3	93	2 h	62	69 k
katsura	21	2	4 h		469	96 h	65	12 k
resultants	3	16	96		152	26 h	75	5399
resultants	2	40		200		238	69	1412
structured $*$	3	10	3.4		118	2.1	53	313
structured $*$	3	20	3.5	12	164	6.1	56	634
structured $*$	3	30	3.3	92	133	37	71	818

Figure 1: Total degree homotopy benchmarks. A * means that only 100 random roots were tracked.

²Breiding, P., Timme, S. HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Target systems

- Dense: f_i^{\odot} 's of given degree with random coefficients
- Structured: f_i^{\odot} 's of the form $\pm 1 + \sum_{i=1}^{\ell} \left(\sum_{j=1}^n a_{i,j} z_j \right)^d$, $a_{i,j} \in_R \{-1, 0, 1\}$
- Resultants: pick $h_1, h_2 \in \mathbb{C}[z_1, \cdots, z_n][y]$, compute their resultant $h \in \mathbb{C}[z_1, \cdots, z_n]$ and fill with random dense polynomials
- Katsura family (sparse high dimension low degree)

Start systems

• Total degree homotopies: f_i^{\triangleright} 's of the form $\gamma_i(z_i^{d_i}-1)$, $\gamma_i \in_R \mathbb{C}$, $d_i = \deg f_i^{\odot}$