Validated numerics for algebraic path tracking

Alexandre Guillemot & Pierre Lairez MATHEXP, Université Paris–Saclay, Inria, France

ISSAC 2024 July 19, 2024 | Raleigh, NC, USA

(naío-

Introduction

Setup

- Let g : C × Cⁿ → Cⁿ be a polynomial map.
- Notation: $g_t : \mathbb{C}^n \to \mathbb{C}^n$ defined by $g_t(z) = g(t, z)$.
- Let $z \in \mathbb{C}^n$ such that $g_0(z) = 0$.

Introduction

Setup

- Let g : C × Cⁿ → Cⁿ be a polynomial map.
- Notation: $g_t : \mathbb{C}^n \to \mathbb{C}^n$ defined by $g_t(z) = g(t, z)$.
- Let $z \in \mathbb{C}^n$ such that $g_0(z) = 0$.
- $\stackrel{\rightsquigarrow}{\longrightarrow} \text{ Moving the parameter from 0 to 1} \\ \text{ induces } \zeta : [0,1] \rightarrow \mathbb{C}^n \text{ s.t. } \zeta(0) = \textbf{z} \text{ and } \\ g_t(\zeta(t)) = 0.$
- Goal: "Track" ζ, with some topological guarantees.

Motivation: braid computations

Setup

- Let $g \in \mathbb{C}[t, z]$,
- let $b \in \mathbb{C} \setminus \Sigma$ be a base point,

Motivation: braid computations

Setup

- Let $\mathbf{g} \in \mathbb{C}[t, z]$,
- let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma: [0,1] \to \mathbb{C} \setminus \Sigma$ be a loop starting at \underline{b} .
- The displacement of all roots of g_t when t moves along γ defines a braid.

Algorithmic goal

Input: g, γ (p.w. linear)

Output: the associated braid

Tool: certified path tracking

Previous work

Noncertified path trackers

- PHCpack by Verschelde (1999)
- Bertini by Bates, Hauenstein, Sommese, and Wampler (2013)
- HomotopyContinuation.jl by Breiding and Timme (2018)

Certified path trackers using Smale's alpha-theory

• NAG for M2 by Beltrán and Leykin (2012, 2013)

Certified path trackers in one variable

- Marco-Buzunariz and Rodríguez (2016)
- Kranich (2015)
- Xu, Burr, and Yap (2018)

Certified path trackers using interval arithmetic

- Kearfott and Xing (1994)
- van der Hoeven (2015) Krawczyk operator + Taylor models
- Duff and Lee (2024) similar to us but independent work

- Becify an *algorithm* implementing the Krawczyk + Taylor approach.
- Z Prove *termination*.
- In which model?
 - Exact arithmetic is not realistic.
 - We can't prove anything with 64-bits floating point numbers.
 - We want an adaptive precision model (as implemented by MPFI or Arb).
 - \rightsquigarrow We have to recognize when the working precision may not be enough.
- How good is the Krawczyk + Taylor approach?
 - \rightsquigarrow Competitive Rust implementation

Interval arithmetic

Problem

Given $f \in \mathbb{R}[x]$, I and J intervals, check $f(I) \subseteq J$.

Sufficient solution

 Define interval binary operations ⊞ and ⊠ that take two intervals, give an interval and is such that for all x ∈ I, y ∈ J,

$$x + y \in I \boxplus J, xy \in I \boxtimes J$$

- Write *f* as a composition of binary operations and replace each operation by its interval counterpart (**interval extension**, denoted by □*f*), then plug I and check if the result is contained in J.
- This is only a sufficient condition

Computational model

- Interval endpoints : \mathbb{Q} ,
- $[a, b] \boxplus [c, d] = [a + c, b + d],$
- $[a, b] \boxtimes [c, d] = [\min\{ac, ad, bc, bd\}, \max\{ac, ad, bc, bd\}].$

Pros and cons

- \checkmark good theoritical properties
- × coefficient swell

Computational model

- Interval endpoints : {IEEE-754 64-bits floating-point numbers},
- $[a,b] \boxplus [c,d] = [\underline{a+c}, \overline{b+d}],$
- $[a, b] \boxtimes [c, d] = [\min\{\underline{ac}, \underline{ad}, \underline{bc}, \underline{bd}\}, \max\{\overline{ac}, \overline{ad}, \overline{bc}, \overline{bd}\}].$

Pros and cons

🗸 fast

- × bad theoritical properties
- × not enough representable numbers

Computational model

- Interval endpoints : $\{m2^e \in \mathbb{R} : m, e \in \mathbb{Z}\},\$
- $[a,b]\boxplus_u[c,d]\subseteq [a+c-Mu,b+d+Mu],$
- $[a,b] \boxtimes_u [c,d] \subseteq [\min\{ac,ad,bc,bd\} M^2u, \max\{ac,ad,bc,bd\} + M^2u],$

for all $M \ge 1$, all $a, b, c, d \in [-M, M]$, and $u \in (0, 1)$ is the unit roundoff that should be specified at each operation.

Pros and cons

- good theoritical properties as $u \to 0$
- \checkmark fast when we can maintain low precision
 - implemented by MPFI and Arb
- compatible with IEEE-754 floating point arithmetic, when $u>2^{-53}$
- when implemented with double precision only, a computation is guaranteed to terminate or fail with a precision error, it cannot hang

1	def track(g, Z):
2	$t \leftarrow 0$
3	$L \leftarrow []$
4	while $t < 1$:
5	$Z \leftarrow \textit{refine}(g_t, Z)$
6	$pred \gets a \ predictor$
7	$\delta \leftarrow \textit{validate}(\textit{g},\textit{t},\textit{Z},\textit{pred})$
8	$t \leftarrow t + \delta$
9	append (t, Z) to L
10	return L

1	def track(g, Z):
2	$t \leftarrow 0$
3	$L \leftarrow []$
4	while $t < 1$:
5	$Z \leftarrow \textit{refine}(g_t, Z)$
6	$pred \gets a \ predictor$
7	$\delta \leftarrow \textit{validate}(g, t, Z, \textit{pred})$
8	$t \leftarrow t + \delta$
9	append (t, Z) to L
10	return L

1	def track(g, Z):
2	$t \leftarrow 0$
3	$L \leftarrow []$
4	while $t < 1$:
5	$Z \leftarrow \textit{refine}(g_t, Z)$
6	$pred \gets a \ predictor$
7	$\delta \leftarrow \textit{validate}(\textit{g}, \textit{t}, \textit{Z}, \textit{pred})$
8	$t \leftarrow t + \delta$
9	append (t, Z) to L
10	return L

1	def track(g, Z):
2	$t \leftarrow 0$
3	$L \leftarrow []$
4	while $t < 1$:
5	$Z \leftarrow \textit{refine}(g_t, Z)$
6	$pred \gets a \ predictor$
7	$\delta \leftarrow \textit{validate}(g, t, Z, \textit{pred})$
8	$t \leftarrow t + \delta$
9	append (t, Z) to L
10	return L

"Algorithm"

def track(g, Z): 1 $t \leftarrow 0$ 2 $L \leftarrow []$ 3 while t < 1: 4 $Z \leftarrow refine(g_t, Z)$ 5 pred \leftarrow a predictor 6 $\delta \leftarrow validate(g, t, Z, pred)$ 7 $t \leftarrow t + \delta$ 8 append (t, Z) to L 9 return L 10

"Algorithm"

- **def** track(g, Z): 1 $t \leftarrow 0$ 2 $L \leftarrow []$ 3 while t < 1: 4 $Z \leftarrow refine(g_t, Z)$ 5 pred \leftarrow a predictor 6 $\delta \leftarrow validate(g, t, Z, pred)$ 7 $t \leftarrow t + \delta$ 8
- 9 append (t, Z) to L

10 return L

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0, 1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

such that for all $u, v \in B$,

$$-Af(z) + [I_n - A \cdot Jf(z+u)]v \in \rho B.$$

Then f has a unique zero in $z + \rho B$.

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0, 1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

$$-Af(z) + [I_n - A \cdot Jf(z + B)]B \subseteq \rho B.$$

Then f has a unique zero in $z + \rho B$.

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0, 1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

$$-Af(z) + [I_n - A \cdot Jf(z + B)]B \subseteq \rho B.$$

Then f has a unique zero in $z + \rho B$.

Proof sketch

We show that $\varphi : z + \rho B \to \mathbb{C}^n$ defined by $\varphi(w) = w - Af(w)$ is a ρ -contraction map with values in $z + \rho B$.

Definition

A ρ -Moore box for f is a triple (z, B, A) which satisfies Moore's criterion.

Algorithm

5

7

- 1 def refine(f, z, B, A):
- 2 $U \leftarrow A; B \leftarrow 2B$
- 3 while not $-A \cdot \Box f(z) + [I A \cdot \Box Jf(z + B)] B \subseteq \frac{1}{8}B$
- 4 if $-U \cdot \Box f(z) \subseteq \frac{1}{512}B$: # left term is small

$B \leftarrow rac{1}{2}B$

6 **else:** # left term is big

$$z \leftarrow z - Uf(z)$$

$$A \leftarrow Jf(z)^{-1} \ \#$$
 unchecked arithmetic

9 return z, B, A

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A \neq \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Algorithm

def refine(f, z, B, A): $U \leftarrow A$: $B \leftarrow 2B$: shrink_cnt $\leftarrow 0$ 2 while not $-A \cdot \Box f(z) + [I - A \cdot \Box Jf(z + B)] B \subset \frac{1}{2}B$ 3 if $-U \cdot \Box f(z) \subseteq \frac{1}{512}B$: # left term is small 4 $B \leftarrow \frac{1}{2}B$; shrink_cnt \leftarrow shrink_cnt + 1 5 if shrink_cnt > 8: 6 double working precision 7 8 else: # left term is big $z \leftarrow z - Uf(z)$ 9 $A \leftarrow Jf(z)^{-1} \#$ unchecked arithmetic return z, B, A

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A = \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

-1-f = -(f - D A)

Algorithm

T	der renne (r, z, D, A) :
2	$U \leftarrow A; B \leftarrow 2B; \text{ shrink_cnt} \leftarrow 0$
3	while not $-A \cdot \Box f(z) + [I - A \cdot \Box Jf(z + B)] B \subseteq$
4	if $-U \cdot \Box f(z) \subseteq rac{1}{512}B$: # left term is small
5	$B \leftarrow \frac{1}{2}B$; shrink_cnt \leftarrow shrink_cnt + 1
6	if shrink_cnt > 8 :
7	double working precision
8	else: # left term is big
9	$\delta \leftarrow U \cdot \Box f(z)$
10	if width $(z - \delta) > \frac{1}{40} \ \delta\ _{\square}$:
11	double working precision
12	else:
13	$z \leftarrow mid(z - \delta)$
14	$A \leftarrow J f(z)^{-1} \ \#$ unchecked arithmetic
15	return z, B, A

Input

B

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A = \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

d = f = (f = D A)

Algorithm

T	def renne (r, z, D, A) :
2	$U \leftarrow A; B \leftarrow 2B; \text{ shrink_cnt} \leftarrow 0$
3	while not $-A \cdot \Box f(z) + [I - A \cdot \Box Jf(z + B)] B \subseteq$
4	if $-U \cdot \Box f(z) \subseteq rac{1}{512}B$: $\#$ left term is small
5	$B \leftarrow rac{1}{2}B$; shrink_cnt \leftarrow shrink_cnt + 1
6	if shrink_cnt > 8 :
7	double working precision
8	else: # left term is big
9	$\delta \leftarrow U \cdot \Box f(z)$
10	if width $(z - \delta) > rac{1}{40} \ \delta\ _{\square}$:
11	double working precision
12	else:
13	$z \leftarrow mid(z - \delta)$
14	$A \leftarrow Jf(z)^{-1}$ $\#$ unchecked arithmetic
15	return z, B, A

Input

В

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A \neq \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Proposition

refine terminates and is correct.

Step validation

Input

- $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$,
- $t \in [0, 1]$,
- (z, B, A) a $\frac{1}{8}$ -Moore box for g_t , returned by refine.

Output

 $\delta > 0$ s.t. for all $s \in T = [t, t + \delta]$, (z, B, A) is a $\frac{7}{8}$ -Moore box for g_s .

Proposition

validate terminates and is correct.

Algorithm

3

4

6

7

- def validate $(g, t, \delta_{hint}, z, B, A)$:
- 2 $\delta \leftarrow \delta_{\text{hint}}; \quad T \leftarrow [t, t + \delta]$
 - while $-A \cdot \Box g_T(z) + [I A \cdot \Box Jg_T(z + B)] B \notin \frac{7}{8}B$:
 - $\delta \leftarrow rac{\delta}{2}$; $T \leftarrow [t,t+\delta]$

if
$$\delta < u$$
:

double working precision

return δ

Step validation

Input

- $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$,
- $t \in [0, 1]$,
- (z, B, A) a $\frac{1}{8}$ -Moore box for g_t , returned by refine.

Output

 $\delta > 0$ s.t. for all $s \in T = [t, t + \delta], (z, B, A)$ is a $\frac{7}{8}$ -Moore box for g_s .

Proposition

validate terminates and is correct.

Algorithm

3

4

6

- def validate $(g, t, \delta_{hint}, z, B, A)$:
- 2 $\delta \leftarrow \delta_{\text{hint}}; \quad T \leftarrow [t, t + \delta]$
 - while $-A \cdot \Box g_T(z) + [I A \cdot \Box Jg_T(z+B)] B \notin \frac{7}{8}B$:
 - $\delta \leftarrow rac{\delta}{2}$; $T \leftarrow [t,t+\delta]$

if
$$\delta < u$$
:

double working precision

return δ

Remark

It is possible to modify this algorithm to validate along a predictor. It requires the use of Taylor models.

- ✓ Rust implementation.
- ✓ Available at https://gitlab.inria.fr/numag/algpath.
- × Double precision only, abort instead of raising precision.
- ✓ SIMD interval arithmetic, following Lambov (2008).
- ✓ Hermite's cubic predictor.
- ✓ Benchmarked against HomotopyContinuation.jl and NAG for Macaulay2.

We have benchmarks, but caveat

- They may not be relevant for your application.
- Timings are difficult to get consistent, especially with Julia.
- Large variability of the metrics.

So, is it fast?

Total time

- 1-30× slower than HC.jl, lot of variability
- orders of magnitude faster than M2

Iterations/sec. (measure the efficiency refine and validate)

- 2× slower than M2 (I have been surprised by the efficiency of M2!)
- 5-10× slower than HC.jl

Total number of iterations (measure the theoretical merit)

- 1-5 \times more iterations than HC.jl + large deviations
- orders of magnitude less than M2
- $1-8\times$ the theoretical minimum of the method (this has a precise meaning)
- Maybe we can gain a factor 2 by imitating Duff and Lee (2024).

Number of iterations performed by HomotopyContinuation.jl

				circui	it size		HomotopyContinuation.jl				algpath					Macaulay2				
name	dim.	deg	# paths	f	$\mathrm{d}f$	fail.	med.	max.	ksteps/s	time	fail.	med.	max.	ksteps/s	time	fail.	med.	max.	ksteps/s	time
dense	1	30	30	248	314		10	25	41	2.0		23	372	25	< 0.1		830 k	3478 k	30	18 min
dense	1	40	40	328	416		14	30	45	2.0		34	197	24	< 0.1			> 1	h	
dense	1	50	50	408	520		12	61	37	1.9		30	5567	13	0.7			> 1	h	
dense	1	100	100	808	1054		13	51	23	1.9		38	5289	7.4	1.4			> 1	h	
dense	1	500	500	4008	5466		14	59	3.8	3.9	2	60	1121	2.3	17	500				4.0
dense	1	1000	1000	8008	10952		15	100	1.7	12	35	74	976	1.1	82	1000				29
dense	2	10	100	1016	1280		22	74	33	2.6		53	307	9.2	0.7		33 k	301 k	28	158
dense	2	20	400	3616	4612		25	63	13	3.1		74	401	2.9	12			> 1	h	
dense	2	30	900	7816	9952		24	127	5.8	6.4		85	690	1.4	72			> 1	h	
dense	2	40	1600	13616	17284		25	95	3.4	14		100	998	0.81	268			> 1	h	
dense	2	50	2500	21016	26624		27	84	2.3	33		117	1675	0.53	12 min			> 1	h	
katsura	9	2	256	448	228		82	132	54	4.2		148	286	9.5	4.2		12 k	59 k	18	186
katsura	11	2	1024	606	308		100	179	41	6.7		177	359	6.3	30		21 k	88 k	13	30 min
katsura	16	2	32768	1090	548		153	303	22	235		304	1847	2.7	1 h			> 50) h	
katsura	21	2	1048576	1696	844		209	469	13	4 h	483	427	8798	1.4	101 h		n	ot bench	marked	
katsura *	26	2	100	2430	1202		305	466	6.9	8.8	1	800	2930	0.73	125			> 1	h	
katsura *	31	2	100	3286	1614		382	538	4.9	12	1	852	5021	0.47	219			> 1	h	
katsura *	41	2	100	5376	2618		554	787	2.7	24	9	1371	5182	0.19	13 min			> 1	h	
dense *	4	3	100	1080	1318		39	67	41	2.4		66	127	8.3	0.9		3384	9936	35	10
dense *	6	3	100	4092	5384		54	96	9.0	3.3		112	224	2.3	5.1		11 k	24 k	18	62
dense *	8	3	100	11120	15242		73	124	2.1	6.3		157	354	0.86	19		21 k	74 k	9.5	243
structured *	4	3	100	244	418		40	78	92	4.0		75	199	24	0.4		4531	8925	41	11
structured *	6	3	100	426	778		66	101	59	3.9		130	254	13	1.1		18 k	61 k	23	85
structured *	8	3	100	670	1252		81	121	40	3.9		182	283	7.9	2.3		36 k	97 k	13	305
structured N	5	5	1	302	545		42	42	4.9	3.1		99	99	18	< 0.1		252 k	252 k	12	22
structured N	10	10	1	1034	2024		53	53	0.18	3.1		123	123	4.9	< 0.1			> 1	h	
structured N	15	15	1	2366	5079			> 8 G	В			628	628	2.0	0.4			> 8	GB	
structured N	20	20	1	3554	6721			> 8 G	В			1591	1591	1.2	1.5			> 8	GB	
structured N	25	25	1	5466	10541			> 8 G	в			1734	1734	0.69	2.9			> 8	GB	
structured N	30	30	1	7788	15239			> 8 G	В			1989	1989	0.43	5.2			> 8	GB	

			Home	otopyCont	inuation.jl		algpath	ı	Macaulay2			
name	dim.	max deg	med.	ksteps/s	time (s)	med.	ksteps/s	time (s)	med.	ksteps/s	time (s)	
dense	1	10	6	30	1.8	11	55	< 0.1	629	55	0.2	
dense	1	50	12	37	1.9	30	13	0.7		> 1 h		
dense	2	10	22	33	2.6	53	9.2	0.7	33 k	28	158	
dense	2	30	24	5.8	6.4	85	1.4	72		> 1 h		
dense	2	50	27	2.3	33	117	0.53	12 min		> 1 h		
katsura	9	2	82	54	4.2	148	9.5	4.2	12 k	18	186	
katsura	11	2	100	41	6.7	177	6.3	30	21 k	13	30 min	
katsura	16	2	153	22	235	304	2.7	1 h		> 50 h	I	
katsura	21	2	209	13	4 h	427	1.4	101 h	nc	t benchm	arked	
dense *	8	3	73	2.1	6.3	157	0.86	19	21 k	9.5	243	
structured *	8	3	81	40	3.9	182	7.9	2.3	36 k	13	305	
structured N	10	10	53	0.18	3.1	123	4.9	< 0.1		> 1 h		
structured N	20	20		> 8 G	В	1591	1.2	1.5		> 8 Ge	3	
structured N 30 30 $> 8 \text{ GB}$		1989	0.43	5.2		> 8 Ge	3					

References i

- Bates, D. J., Hauenstein, J. D., Sommese, A. J., & Wampler, C. W. (2013). Numerically solving polynomial systems with Bertini (Vol. 25). SIAM, Philadelphia, PA.
- Beltrán, C., & Leykin, A. (2012). Certified numerical homotopy tracking. Exp. Math., 21(1), 69–83. https://doi.org/10/ggck73
- Beltrán, C., & Leykin, A. (2013). Robust certified numerical homotopy tracking. Found. Comput. Math., 13(2), 253–295. https://doi.org/10/ggck74
- Breiding, P., & Timme, S. (2018). HomotopyContinuation.jl: A package for homotopy continuation in julia. *Int. Congr. Math. Softw.*, 458–465. https://doi.org/10/ggck7q
- Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.
- Kearfott, R. B., & Xing, Z. (1994). An interval step control for continuation methods. SIAM J. Numer. Anal., 31(3), 892–914.
- Kranich, S. (2015). An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves.
- Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4(3), 187–201. https://doi.org/10/css7z9

References ii

- Lambov, B. (2008). Interval Arithmetic Using SSE-2. In P. Hertling, C. M. Hoffmann, W. Luther, & N. Revol (Eds.), *Reliab. Implement. Real Number Algorithms* (pp. 102–113). Springer. https://doi.org/10.1007/978-3-540-85521-7_6
- Marco-Buzunariz, M. Á., & Rodríguez, M. (2016). SIROCCO: A library for certified polynomial root continuation. Proc. ICMS 2016, 191–197. https://doi.org/10/grqk32
- Moore, R. E. (1977). A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal., 14(4), 611–615. https://doi.org/10/c66n76
- Rump, S. M. (1983). Solving algebraic problems with high accuracy. In U. W. Kulisch & W. L. Miranker (Eds.), A New Approach to Scientific Computation (pp. 51–120). Academic Press. https://doi.org/10/kh8k
- 📄 van der Hoeven, J. (2015). Reliable homotopy continuation. https://hal.science/hal-00589948v4
 - Verschelde, J. (1999). Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. TOMS, 25(2), 251–276. https://doi.org/10/fncfxj
- Xu, J., Burr, M., & Yap, C. (2018). An approach for certifying homotopy continuation paths: Univariate case. Proc. ISSAC 2018, 399–406. https://doi.org/10/ggck7k

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Target systems

- Dense: f_i^{\odot} 's of given degree with random coefficients
- Structured: f_i^{\odot} 's of the form $\pm 1 + \sum_{i=1}^5 \left(\sum_{j=1}^n a_{i,j} z_j\right)^d$, $a_{i,j} \in_R \{-1,0,1\}$
- Katsura family (sparse high dimension low degree)

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Target systems

- Dense: f_i^{\odot} 's of given degree with random coefficients
- Structured: f_i^{\odot} 's of the form $\pm 1 + \sum_{i=1}^5 \left(\sum_{j=1}^n a_{i,j} z_j\right)^d$, $a_{i,j} \in_R \{-1, 0, 1\}$
- Katsura family (sparse high dimension low degree)

Start systems

- Total degree homotopies: f_i^{\triangleright} 's of the form $\gamma_i(z_i^{d_i}-1)$, $\gamma_i \in_R \mathbb{C}$, $d_i = \deg f_i^{\odot}$
- Newton homotopies: $f^{\triangleright}(z) = f^{\odot}(z) f^{\odot}(z_0)$