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Motivation: braid computations

o Let g € C[t,z],

o define F(z) = g(t, 2).

C. o Let b € C\X be a base point,
/ \ o let 7 :[0,1] — C\X be a loop starting
at

e The displacement of all roots of F;
when t moves along - defines a braid.

/ / X Input: g, v

Output: the associated braid
Tool: certified path tracking
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Certified path tracking

F
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Related work

path trackers

e PHCpack by Verschelde (1999)

e Bertini by Bates, Sommese, Hauenstein, and Wampler (2013)

e HomotopyContinuation.jl by Breiding and Timme (2018)
Certified path trackers using Smale’s alpha-theory

e NAG for M2 by Beltran and Leykin (2012, 2013)
Certified path trackers in

e SIROCCO by Marco-Buzunariz and Rodriguez (2016)

e Kranich (2016)

e Xu, Burr, and Yap (2018)
Certified path trackers using interval arithmetic

e Kearfott and Xing (1994)

e van der Hoeven (2015)  Krawczyk operator + Taylor models
e Duff and Lee (2024) 3/15



Algpath

Features

e Rust implementation available at https://gitlab.inria.fr/numag/algpath,

certified corrector-predictor loop,

relies on interval arithmetic and Krawczyk’s method,

e SIMD double precision interval arithmetic following [Lambov, 2008],

o adaptive precision using Arb!,
° mixed precision between double precision and Arb without overhead.
Applications

e Monodromy computations,

e Braid computations

LF. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”

4/15


https://gitlab.inria.fr/numag/algpath

Certified corrector-predictor loop

Recall: for all 1], F =
ecall: forall ¢ € [0, 1], Fi(G:) =0 def track(F,z):

’”L t+0; L+
Y + while t < 1:
z < refine(Fy, z)
d < validate(F,t, z)
tt+0
2 append (t,z) to L

return L
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Interval arithmetic

Given f € R[x], | and J intervals, check f(I) C J .

e Define interval binary operations B and X that take two intervals, give an interval and is
such that for all x € A, y € B,

x +y € ATB, xy € AXB

e Write f as a composition of binary operations and replace each operation by its interval
counterpart (interval extension, denoted by [Jf), then plug | and check if the result is
contained in J (as f(/) C Of(/)).

This is only a sufficient condition

6/15



Interval arithmetic

e Interval endpoints : Q
e [a,b]H[c,d] =[a+ c, b+ d],
e [a, b]X¥|[c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}].
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Interval arithmetic

e Interval endpoints : Q
[a, b]H[c,d] = [a+ ¢, b+ d],
[a, b]X[c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}].

e If we decompose f as (x - x — x) + 2, we get [1,3].
e If we decompose f as x - (x — 1) + 2, we get [1,2].
Actually, 7([0,1]) = [1.75, 2].

Coefficient swell
+ Use double endpoints + correct roundings
+ Arb: variant where intervals are of the form [x £ r] and x has arbitrary precision.
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Krawczyk’s method

Root isolation criterion [Krawczyk, 1969], [Moore, 1977], [Rump, 1983]
e f:C"— C" polynomial, p € (0,1),
e zc C" reRyp Ac CM*n

such that for all u, v € B (where B is the ball of center 0 and radius r for | - ||),
—Af(z)+[I,— A-Jf(z+ u)]v € pB.

Then f has a unique zero in z + pB.

8/15



Krawczyk’s method

Root isolation criterion [Krawczyk, 1969], [Moore, 1977], [Rump, 1983]
e f:C"— C" polynomial, p € (0,1),
e zc C" reRyp Ac CM*n

Let B be the ball of center 0 and radius r for || - ||oo. Assume that
—Af(z) + [, — A- Jf(z + B)]B C pB.

Then f has a unique zero in z + pB.

8/15



Krawczyk’s method

Root isolation criterion [Krawczyk, 1969], [Moore, 1977], [Rump, 1983]
e f:C"— C" polynomial, p € (0,1),

e zc C" reRyp Ac CM*n

Let B be the ball of center 0 and radius r for || - ||oo. Assume that
—Af(z) + [, — A- Jf(z + B)]B C pB.
Then f has a unique zero in z + pB.

Proof sketch
We show that ¢ : z+ pB — C" defined by p(w) = w — Af(w) is a p-contraction map with
values in z + pB.

Definition

A p-Moore box for f is a triple (z, r, A) which satisfies Moore's criterion.
8/15



Adaptive precision

Writting the algorithm in an idealized setup

Easier termination proofs
Cannot implement the theory, termination is not ensured in practice...
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The model we chose (also Arb’s model)
e Precision is managed globally
e A change of precision induces no changes on data, only operations are changed

e Precision of data is indirectly changed by performing operations on it

Pros

Algorithms written in this model can be implemented
A Termination: careful precision management in theory

Precision decreases do not hinder correction
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Adaptive precision

Writting the algorithm in an idealized setup
Easier termination proofs
Cannot implement the theory, termination is not ensured in practice...
The model we chose (also Arb’s model)
e Precision is managed globally
e A change of precision induces no changes on data, only operations are changed

e Precision of data is indirectly changed by performing operations on it

Pros

Algorithms written in this model can be implemented
A Termination: careful precision management in theory

Precision decreases do not hinder correction

In practice we use Arb and decrease precision by 1 bit at each iteration of the main loop. 9/15



Double precision SIMD interval arithmetic is faster than Arb, but it lacks the ability to manage

precision. . .

Goal

Use double precision when possible, else use Arb. We
want to have no overhead over double precision only.

Data can either be double precision or Arb balls.
Operations manage arithmetic switch depending on
precision

Overhead

Challenging implementation

enum MixedRI {
Fast (F64RI),
Accurate(Arb),
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Spacing arithmetic switches

One iteration of the main loop

def one_step(F, m):
try:
convert m to double precision
perform a corrector-predictor round at double precision
except:
convert m to Arb

perform a corrector-predictor round using Arb
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Spacing arithmetic switches

One iteration of the main loop

def one_step(F, m):
try:
convert m to double precision
perform a corrector-predictor round at double precision
except:
convert m to Arb

perform a corrector-predictor round using Arb

Can we always convert m to Arb ?
Can we always convert m to double precision when the working precision is 53 ?7
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Exact conversions

Consider double precision interval [-27%,2]. The exact ball associated is
[(1—27%1) £ (1 +27%1)]. 1+ 275! cannot be represented by a mag t!

Remark

e Recall: a moore box is a triple (z,r, A) where z € C", r ¢ R, A€ C"*". In practice,
represented by singleton intervals.

e Conversions of singleton intervals behave as expected!

algpath algpath (fixed precision)

name dim. max deg time (s) time (s)

dense 1 100 0.4 0.4
katsura 16 2 42 min 41 min
dense 2 50 588 588
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Implementation details

We would like to avoid writting the algorithm for each arithmetic
Challenges
e Rust is statically typed,

e our functions depend on the type of intervals (double precision, Arb balls) but also on
higher level types (e.g. complex intervals, interval matrices),

e Rust's generics are interface based

Still we tried

Very little code duplication
Easy to integrate additional arithmetics
Lots of complicated interfaces trying to avoid “where clause” swell

High level generic functions require heavy setup for only a few lines of code.
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HomotopyContinuation.jl algpath

name dim. max deg time (s) fail. max. time (s) prec. max.
dense 1 1000 6.8 100 12 min 59 17k
dense 1 2000 26 79 1h 62 69 k
katsura 21 2 4 h 468 60 h 65 12k
resultants 3 16 5.6 128 92 58 1857
resultants 2 40 185 69 1414
structured * 3 10 3.0 118 1.5 53 313
structured * 3 20 3.0 164 4.2 56 634
structured * 3 30 2.9 133 24 71 818

Figure 1: Total degree homotopy benchmarks. A * means that only 100 random roots were tracked.

?Breiding, P., Timme, S. HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.
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Conclusion

Features

e Rust implementation available at https://gitlab.inria.fr/numag/algpath,

certified corrector-predictor loop,
e relies on interval arithmetic and Krawczyk’s method,

e SIMD double precision interval arithmetic following [Lambov, 2008],

o adaptive precision using Arb?,
) mixed precision between double precision and Arb without overhead.
Todos

o Interface with Sage or Julia

o Avx512 ?

2F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”
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https://gitlab.inria.fr/numag/algpath

Test data

We tested systems of the form g.(z) = tf®(z) + (1 — t)f>(z) (" is the start system, £ is the
target system).

e Dense: fis's of given degree with random coefficients
Structured: f,®'s of the form 1 + Zle (Z};l a,-_jzj)d, ajj€r {—1,0,1}
Resultants: pick hy, hp € Clzy,- -+ , z4][y], compute their resultant h € C[z,- - , z,] and

fill with random dense polynomials

Katsura family (sparse - high dimension - low degree)

Total degree homotopies: f's of the form A/,-(z,-d" —1), 7 €r C, d; = deg °
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