Braid monodromy computations using certified path tracking

Alexandre Guillemot & Pierre Lairez MATHEXP, Université Paris–Saclay, Inria, France

Aca 2025

July 17, 2025 | Cultural Conference Center of Heraklion, Greece

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$

$$(x_1,\cdots,x_n)\in \mathit{OC}_n\mapsto \{x_1,\cdots,x_n\}\in \mathit{C}_n.$$

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$

 $(x_1, \dots, x_n) \in OC_n \mapsto \{x_1, \dots, x_n\} \in C_n.$

Braids

A braid is a homotopy class of a path

$$\beta: [0,1] \to C_n$$
 such that

$$\beta(0) = \beta(1) = \{1, \dots, n\},\$$

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

 $C_n = \{\text{subsets of size } n \text{ in } \mathbb{C}\}.$

$$C_n = \{\text{subsets of size } n \text{ in } \mathbb{C}\}.$$

 $(x_1, \dots, x_n) \in OC_n \mapsto \{x_1, \dots, x_n\} \in C_n.$

Braids

A braid is a **homotopy class** of a path $\beta: [0,1] \rightarrow C_n$ such that

$$\beta(0) = \beta(1) = \{1, \dots, n\},\$$

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$

 $(x_1, \dots, x_n) \in OC_n \mapsto \{x_1, \dots, x_n\} \in C_n.$

Braids

A braid is a homotopy class of a path

$$\beta: [0,1] \to C_n$$
 such that

$$\beta(0) = \beta(1) = \{1, \dots, n\},\$$

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$

 $(x_1, \dots, x_n) \in OC_n \mapsto \{x_1, \dots, x_n\} \in C_n.$

Braids

A braid is a **homotopy class** of a path $\beta: [0,1] \rightarrow C_n$ such that

$$\beta(0) = \beta(1) = \{1, \dots, n\},\$$

Definitions

$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

 $C_n = \{\text{subsets of size } n \text{ in } \mathbb{C}\}.$
 $(x_1, \dots, x_n) \in OC_n \mapsto \{x_1, \dots, x_n\} \in C_n.$

Braids

A braid is a **homotopy class** of a path $\beta: [0,1] \to C_n$ such that $\beta(0) = \beta(1) = \{1, \dots, n\},$

Remark

A path $\zeta=(\zeta_1,\cdots,\zeta_n):[0,1]\to OC_n$ induces a braid. If $\zeta':[0,1]\to OC_n$ is homotopic to ζ , they have the same associated braid

Standard generator σ_i

Standard generator σ_i

Theorem [Artin, 1947]

The σ_i 's generate B_n (+ explicit relations).

$$\sigma_4 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_3 \sigma_1 \sigma_2 \sigma_3^{-1}$$

Standard generator σ_i

Theorem [Artin, 1947]

The σ_i 's generate B_n (+ explicit relations).

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

Setup

- Let $g \in \mathbb{C}[t,z]$,
- define $F_t(z) = g(t, z)$.
- Let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of F_t when t moves along γ defines a braid.

Algorithmic goal

Input: g, γ

Output: the associated braid in terms of Artin's generators

Certified homotopy continuation

Input: $H:[0,1]\times\mathbb{C}^r\to\mathbb{C}^r$ and $z\in\mathbb{C}^r$ such that

H(0,z) = 0.

There exists $\zeta:[0,1]\to\mathbb{C}^r$ such that $H(t,\zeta(t))=0$ and $\zeta(0)=z$. Assume it is unique.

Certified homotopy continuation

Input: $H:[0,1]\times\mathbb{C}^r\to\mathbb{C}^r$ and $z\in\mathbb{C}^r$ such that

H(0,z)=0.

There exists $\zeta:[0,1]\to\mathbb{C}^r$ such that $H(t,\zeta(t))=0$ and $\zeta(0)=z$. Assume it is unique.

Output: A tubular neighborhood isolating ζ .

Certified homotopy continuation

Input: $H:[0,1]\times\mathbb{C}^r\to\mathbb{C}^r$ and $z\in\mathbb{C}^r$ such that

H(0,z)=0.

There exists $\zeta:[0,1]\to\mathbb{C}^r$ such that $H(t,\zeta(t))=0$ and $\zeta(0)=z$. Assume it is unique.

Output: A tubular neighborhood isolating ζ .

Certified homotopy continuation

Input: $H:[0,1]\times\mathbb{C}^r\to\mathbb{C}^r$ and $z\in\mathbb{C}^r$ such that

H(0,z)=0.

There exists $\zeta: [0,1] \to \mathbb{C}^r$ such that $H(t,\zeta(t)) = 0$ and $\zeta(0) = z$. Assume it is unique.

Output: A tubular neighborhood isolating ζ .

We can to that for every solution at t = 0

Certified homotopy continuation

Input: $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$ and $z \in \mathbb{C}^r$ such that H(0,z) = 0.

There exists $\zeta:[0,1]\to\mathbb{C}^r$ such that $H(t,\zeta(t))=0$ and $\zeta(0)=z$. Assume it is unique.

Output: A tubular neighborhood isolating ζ .

We can to that for every solution at t = 0

Application

Take $g \in \mathbb{C}[t,z]$ from last slide and $\gamma:[0,1] \to \mathbb{C} \setminus \Sigma$ $(n = \deg_z(g))$. Apply certified homotopy continuation to $H(t,z) = g(\gamma(t),z)$.

Goal: use Algpath [G. and Lairez, 2024] for this step

Related work

Certified homotopy continuation

- Kearfott, R. B., & Xing, Z. (1994). An Interval Step Control for Continuation Methods.
- van der Hoeven, J. (2015). Reliable homotopy continuation.
- Xu, J., Burr, M., & Yap, C. (2018). An Approach for Certifying Homotopy Continuation Paths: Univariate Case.
- Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.

Braid computations

- Rodriguez, J. I., & Wang, B. (2017). Numerical computation of braid groups.
- Marco-Buzunariz, M. Á., & Rodríguez, M. (2016). SIROCCO: a library for certified polynomial root continuation.

Braid algorithm

We now assume $\zeta = (\zeta_1, \cdots, \zeta_n) : [0,1] \to OC_n$.

Goal

Input: n disjoint tubular neighborhoods around ζ_1, \dots, ζ_n

Output : A decomposition in standard generators of the braid induced by ζ_1, \dots, ζ_n

Braid algorithm

We now assume $\zeta = (\zeta_1, \cdots, \zeta_n) : [0, 1] \to OC_n$.

Goal

Input: n disjoint tubular neighborhoods around ζ_1, \dots, ζ_n

Output: A decomposition in standard generators of the braid induced by ζ_1, \cdots, ζ_n

Interface

We assume a function $\operatorname{sep}(i,j,t)$ that returns $t' \in (t,1]$ and a symbol in $\star \in \{\rightarrow,\leftarrow,\rightarrow,\leftarrow\}$, such that for all $s \in [t,t']$,

- $\operatorname{Re}(\zeta_i(s)) < \operatorname{Re}(\zeta_i(s))$ if $\star = \rightarrow$,
- $\operatorname{Re}(\zeta_i(s)) > \operatorname{Re}(\zeta_i(s))$ if $\star = \leftarrow$,

- $\operatorname{Im}(\zeta_i(s)) < \operatorname{Im}(\zeta_j(s))$ if $\star = \rightarrow$,
- $\operatorname{Im}(\zeta_i(s)) > \operatorname{Im}(\zeta_j(s))$ if $\star = \leftarrow$,

Easy to implement in practice thanks to interval arithmetic!

Cells

Recall: $OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$

Definition

A cell is a pair c = (R, I) of relations on $\{1, \dots, n\}$. We associate to it a topological space $|c| \subseteq OC_n$

which points are $(x_1, \dots, x_n) \in OC_n$ such that

- for all $(i,j) \in R$, $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$,
- for all $(i,j) \in I$, $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$,

Notation

- $i \rightarrow j \iff (i,j) \in R$
- $i \rightarrow j \iff (i,j) \in I$

Cells

Recall: $OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$

Definition

A cell is a pair c=(R,I) of relations on $\{1,\cdots,n\}$. We associate to it a topological space $|c|\subseteq OC_n$ which points are $(x_1,\cdots,x_n)\in OC_n$ such that

- for all $(i,j) \in R$, $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$,
- for all $(i,j) \in I$, $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$,

Notation

- $i \rightarrow j \iff (i,j) \in R$
- $i \rightarrow j \iff (i,j) \in I$

Properties of cells

Empty cells

A cell is empty if and only if there is a cycle in R or in I.

Convex cells

A (non-empty) cell is convex if and only if for all $i, j \in \{1, \dots, n\}$, either $i \rightarrow *j$ or $j \rightarrow *i$ or $i \rightarrow *j$ or $j \rightarrow *i$. We call this graph property "monochromatic semi-connectedness" (m.s.c. for short).

Intersection of cells

Given c = (R, I) and c' = (R', I') two cells, the space associated to $(R \cup R', I \cup I')$ is $|c| \cap |c'|$.

I al not convex

Path to cells

 $\textbf{Input: } \zeta \text{ (represented by tubular neighborhoods)}$

Path to cells

Input: ζ (represented by tubular neighborhoods)

Output: a sequence of m.s.c. cells c_1, \dots, c_r such that there exists $0 = t_0 < \dots < t_r = 1$ and for any $s \in [t_{i-1}, t_i], \zeta(s) \in c_i$

$s \in [\iota_{i-1}, \iota_{i}], \zeta(s) \in C$

Idea:

- Start with an initial m.s.c cell c containing $\zeta(0)$.
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair m.s.c.
- Repeat

Path to cells

Input: ζ (represented by tubular neighborhoods)

Output: a sequence of m.s.c. cells c_1, \cdots, c_r such that there exists $0 = t_0 < \cdots < t_r = 1$ and for any

 $s \in [t_{i-1}, t_i], \ \zeta(s) \in c_i$

Idea:

- Start with an initial m.s.c cell c containing $\zeta(0)$.
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair m.s.c.
- Repeat

Path to cells

Input: ζ (represented by tubular neighborhoods)

Output: a sequence of m.s.c. cells c_1, \dots, c_r such that there exists $0 = t_0 < \dots < t_r = 1$ and for any

$$s \in [t_{i-1}, t_i], \ \zeta(s) \in c_i$$

Idea:

- Start with an initial m.s.c cell c containing $\zeta(0)$.
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair m.s.c.
- Repeat

Step 2: linearize ζ

Definition

Let $\rho, \iota \in \mathfrak{S}_n$. We define

$$\omega_{
ho,\iota} = (
ho(1) + i\iota(1), \cdots,
ho(n) + i\iota(n)) \in \mathit{OC}_n$$

Step 2: linearize ζ

Definition

Let $\rho, \iota \in \mathfrak{S}_n$. We define

$$\omega_{
ho,\iota} = (
ho(1) + i\iota(1), \cdots,
ho(n) + i\iota(n)) \in \mathit{OC}_n$$

$$\omega_{(1\,2)(3\,4),(1\,4\,3)} = \begin{bmatrix} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Linearization of ζ

For each c_i, c_{i+1} , we compute ρ, ι such that $\omega_i = \omega_{\rho, \iota}$ lies in the intersection $c_i \cap c_{i+1}$ (Hint: total order extending R and I).

Step 2: linearize ζ

Definition

Let $\rho, \iota \in \mathfrak{S}_n$. We define

$$\omega_{
ho,\iota} = (
ho(1) + i\iota(1), \cdots,
ho(n) + i\iota(n)) \in \mathit{OC}_n$$

Linearization of ζ

For each c_i, c_{i+1} , we compute ρ, ι such that $\omega_i = \omega_{\rho, \iota}$ lies in the intersection $c_i \cap c_{i+1}$ (Hint: total order extending R and I). The linear interpolation of the ω_i is homotopic to ζ . Why ? m.s.c cells are convex!

Reduction

 Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent

Reduction

- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent
- Assume $\omega_{\rho,\iota}$ and $\omega_{\rho',\iota'}$ both lie in a m.s.c cell c=(R,I). It means that ρ,ρ' extend R and ι,ι' extend I. So $\omega_{\rho,\iota'}$ also lies in c!

Reduction

- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent
- Assume $\omega_{\rho,\iota}$ and $\omega_{\rho',\iota'}$ both lie in a m.s.c cell c=(R,I). It means that ρ,ρ' extend R and ι,ι' extend I. So $\omega_{\rho,\iota'}$ also lies in c!
- We compute the braid of $\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$ then the braid of $\omega_{\rho,\iota'} \to \omega_{\rho',\iota'}$

$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.

$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.

$$\omega_{\rho,\iota} \to \omega_{\rho,\iota'}$$

The induced braid is trivial, as the real part of the strands is constant.

$$\omega_{\rho,\iota'} o \omega_{\rho',\iota'}$$

Let $\rho' \rho^{-1} = s_{i_1} \cdots s_{i_r}$ be a decomposition in

elementary transpositions. Output $\sigma_{i_1}^{\varepsilon_1}\cdots\sigma_{i_r}^{\varepsilon_r}$ with $\varepsilon_1,\cdots,\varepsilon_r\in\{\pm 1\}$ computed using ι' .

Conclusion

~/2025/code/braid_group cargo run --release

Finished `release` profile [optimized] target(s) in 0.08s
Running `target/release/braid group`

 $057011025029047051055061063083030504103103500^{-1}0100037073097098027049087097^{-1}0590150203^{-1}096^{-1}077092$ 1 0 3 1 0 3 10 3 10 3 10 4 10 7 2 1 0 8 4 10 8 1 10 2 6 10 4 1 10 5 1 10 10 10 8 8 10 8 7 1 10 7 1 10 4 1 10 1 6 1 10 5 10 4 10 8 7 10 σ_{13}^{-1} σ_{6}^{-1} σ_{81}^{-1} σ_{65} σ_{87}^{-1} σ_{12}^{-1} σ_{73}^{-1} σ_{11}^{-1} σ_{88}^{-1} σ_{96}^{-1} σ_{93} σ_{94} σ_{95}^{-1} σ_{27}^{-1} σ_{10}^{-1} σ_{66} σ_{62} σ_{71} σ_{74}^{-1} σ_{66}^{-1} σ_{70} σ_{60} σ_{44}^{-1} σ_{15}^{-1} σ_{95}^{-1} σ_{15}^{-1} $\frac{1}{1}$ 093023016 $\frac{1}{1}$ 092 $\frac{1}{1}$ 082 $\frac{1}{1}$ 072 $\frac{1}{1}$ 075 $\frac{1}{1}$ 06 $\frac{1}{1}$ 052 $\frac{1}{1}$ 091022021089 $\frac{1}{1}$ 020073085090 $\frac{1}{1}$ 022091 $\frac{1}{1}$ 092 $\frac{1}{1}$ 0903 $\frac{1}{1}$ 092 $\frac{1}{1}$ 0903 $\frac{1}{1}$ 092 $\frac{1}{1}$ 0903 $\frac{1$ 082 - 083 - 02 - 082 - 094 - 095 - 012 - 067 - 011 - 067 - 011 - 067 - 035 - 068 - 077 - 097 - 014 - 015 - 014 - 098 - 068 - 094 - 098 - $92^{-1}91078^{-1}013^{-1}014070^{-1}069070059^{-1}021083079^{-1}080^{-1}092071015023^{-1}017^{-1}09^{-1}018010019081^{-1}018093092^{-1}019019081^{-1}0180930908^{-1}019019081^{-1}0180930908^{-1}019019081^{-1}0180930908^{-1}019019080908^{-1}019019080908^{-1}019019080908^{-1}019019080908^{-1}019019080908^{-1}019019080908^{-1}01901908^{-1}01908^{$ $017084083^{-1}082^{-1}083^{-1}084^{-1}016072079^{-1}012^{-1}076^{-1}013085^{-1}073086^{-1}036074081087^{-1}088^{-1}015089^{-1}0140870130$ $12017^{-1}018028090^{-1}091^{-1}078092^{-1}093^{-1}094^{-1}095^{-1}098097092^{-1}096^{-1}097^{-1}024098^{-1}094075029^{-1}015076088087^{-1}$ 2.047^{-1} 03 088 02 0 02 1 $^{-1}$ 08 3 08 1 08 4 08 5 07 6 $^{-1}$ 03 2 03 3 $^{-1}$ 08 6 02 01 09 4 08 7 07 7 $^{-1}$ 07 5 07 6 08 8 08 9 07 5 $^{-1}$ 09 0 09 1 06 6 06 5 $^{-1}$ 02 2 $^{-1}$ 08 5^{-1} 084 092 093 094 095 023 096 097 024 082 $^{-1}$ 083 082 019 020 $^{-1}$ 034 $^{-1}$ 035 036 081 $^{-1}$ 074 0 75 025 085 064 063 $^{-1}$ 074 02 6^{-1} 037 $^{-1}$ 038 $^{-1}$ 039 062 061 060 $^{-1}$ 059 $^{-1}$ 060 061 $^{-1}$ 023 $^{-1}$ 012 $^{-1}$ 013 058 057 $^{-1}$ 040 041 $^{-1}$ 022 014 015 $^{-1}$ 042 056 055 $^{-1}$ 054 $^{-1}$ $053044^{-1}072^{-1}073045026025^{-1}084^{-1}074^{-1}075086076^{-1}077052051^{-1}038085050049^{-1}024^{-1}023046^{-1}047078^{-1}07909$ $800084048078082^{-1}080030^{-1}034052^{-1}074076090^{-1}023^{-1}024036^{-1}079078^{-1}04^{-1}021046047070^{-1}046^{-1}028^{-1}068^{-1}08$ $69296923054066^{-1}088^{-1}094^{-1}09032^{-1}049050^{-1}038^{-1}010026^{-1}056^{-1}058^{-1}072040^{-1}044051^{-1}085060^{-1}052012096^{-1}$ 5.7^{-1} 05.8 03.8 06.0 06.1 06.0 $^{-1}$ 05.9 $^{-1}$ 05.2 04.9 $^{-1}$ 04.1 $^{-1}$ 01.4 $^{-1}$ 01.4 02.3 $^{-1}$ 06.0 06.1 $^{-1}$ 04.0 01.3 01.2 $^{-1}$ 06.5 $^{-1}$ 06.5 03.9 03.8 $^{-1}$ 07.4 07.3 $^{-1}$ $63.7^{-1}66.0^{-1}66.3664^{-1}63.663.5634^{-1}68.1^{-1}66.5^{-1}66.667.2626^{-1}62.568.268.268.362.462.5^{-1}62.668.2^{-1}68.4^{-1}67.367.4^{-1}63.263.362.2^{-1}69.4^{-1}67.367.4^{-1}67.367.4^{-1}63.263.362.2^{-1}69.4^{-1}67.367.4^{-1}67.4^{$ 33^{-1} 023022 $^{-1}$ 019 $^{-1}$ 020 $^{-1}$ 019007096031 $^{-1}$ 095094093092085030067 $^{-1}$ 06808 $^{-1}$ 021 $^{-1}$ 020091090075 $^{-1}$ 076075087077 $^{-1}$ 0 $88.076^{-1}089.088.087.086.085.081.047^{-1}098^{-1}097^{-1}029^{-1}028.096^{-1}084.094.095^{-1}094^{-1}093^{-1}083.082.081.091.092^{-1}091^{-1}090^{-1}$ 078 688 689 - 1 688 - 1 679 - 1 687 - 1 682 - 1 686 - 1 61 62 65 6 7 7 61 8 61 7 - 1 685 - 1 684 - 1 683 - 1 682 - 1 678 - 1 63 64 688 680 689 - 1 $\sigma_{18} = {}^{1}\sigma_{19} = {}^{1}\sigma_{18}\sigma_{19} = {}^{1}\sigma_{19} = {}^{1}\sigma_{79} = {}^{1}\sigma_{79} = {}^{1}\sigma_{78}\sigma_{96} = {}^{1}\sigma_{77}\sigma_{79}\sigma_{81} = {}^{1}\sigma_{57}\sigma_{6}\sigma_{80} = {}^{1}\sigma_{77}\sigma_{87} = {}^{1}\sigma_{78}\sigma_{98} = {}^{1}\sigma_{78$ 101502 - 103 - 1011 010 - 109010 077 - 1090 - 1076 - 1011 01604 - 105 - 1022 - 106 - 107 - 1074 073 014 013 - 1014 - 1015 - 1014 08 - 107 5^{-1} 074 $^{-1}$ 09 $^{-1}$ 010 $^{-1}$ 073 $^{-1}$ 072071026 $^{-1}$ 012013071022073 $^{-1}$ 067070069070025089 $^{-1}$ 072 $^{-1}$ 014015093 $^{-1}$ 092 $^{-1}$ 094093092 $0.71^{-1}0.6070^{-1}0.7088^{-1}0.95096^{-1}0.11^{-1}0.12^{-1}0.15^{-1}0.27^{-1}0.3^{-1}0.14^{-1}0.15^{-1}0.6^{-1}0.4095^{-1}0.801.90860.15^{-1}0.6068067$ $011^{-1}085069^{-1}013014068^{-1}087^{-1}033017^{-1}086^{-1}018^{-1}082^{-1}08304^{-1}05^{-1}06^{-1}094^{-1}081^{-1}08204050607091093^{-1}0100$ 92^{-1} 088021 $^{-1}$ 089 $^{-1}$ 023020021022021020087088 $^{-1}$ 023019 $^{-1}$ 066 $^{-1}$ 020 $^{-1}$ 021 $^{-1}$ 022 $^{-1}$ 05 $^{-1}$ 04093 $^{-1}$ 020019 $^{-1}$ 020 $^{-1}$ 094065 $013095096 - {}^{1}020302 - {}^{1}0100 - {}^{1}01 - {}^{1}03 - {}^{1}07 - {}^{1}09 - {}^{1}013 - {}^{1}017 - {}^{1}019 - {}^{1}023 - {}^{1}023 - {}^{1}033 - {}^{1}035 - {}^{1}039 - {}^{1}045 - {}^{1}045 - {}^{1}053 - {}^{1}063 - {}^{$ 1 065 $^{-1}$ 067 $^{-1}$ 069 $^{-1}$ 071 $^{-1}$ 075 $^{-1}$ 079 $^{-1}$ 085 $^{-1}$ 087 $^{-1}$ 089 $^{-1}$ 091 $^{-1}$ 095 $^{-1}$ 097 $^{-1}$ 098

