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Warmup: braid group

Definitions

OCn = {(x1, · · · , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.
Cn = {subsets of size n in C}.
(x1, · · · , xn) ∈ OCn 7→ {x1, · · · , xn} ∈ Cn.

Braids

A braid is a homotopy class of a path

β : [0, 1]→ Cn such that

β(0) = β(1) = {1, · · · , n},

Remark

A path ζ = (ζ1, · · · , ζn) : [0, 1]→ OCn

induces a braid. If ζ ′ : [0, 1]→ OCn is

homotopic to ζ, they have the same

associated braid
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Examples and Artin’s theorem

σ4σ
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3 σ3σ1σ2σ

−1
3

Standard generator σi

Theorem [Artin, 1947]

The σi ’s generate Bn (+ explicit relations).
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Another example

Ct

Cz

b

roots of Fb

Setup

• Let g ∈ C[t, z ],

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators
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Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(t, ζ(t)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at t = 0

Application

Take g ∈ C[t, z ] from last slide and γ : [0, 1]→ C\Σ
(n = degz(g)). Apply certified homotopy continuation

to H(t, z) = g(γ(t), z).

Goal: use Algpath [G. and Lairez, 2024] for this step
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Braid algorithm

We now assume ζ = (ζ1, · · · , ζn) : [0, 1]→ OCn.

Goal

Input : n disjoint tubular neighborhoods around ζ1, · · · , ζn
Output : A decomposition in standard generators of the braid induced by ζ1, · · · , ζn

Interface

We assume a function sep(i , j , t) that returns t ′ ∈ (t, 1] and a symbol in ⋆ ∈ {→,←,→,←},
such that for all s ∈ [t, t ′],

• Re(ζi (s)) < Re(ζj(s)) if ⋆ =→,

• Re(ζi (s)) > Re(ζj(s)) if ⋆ =←,

• Im(ζi (s)) < Im(ζj(s)) if ⋆ =→,

• Im(ζi (s)) > Im(ζj(s)) if ⋆ =←,

Easy to implement in practice thanks to interval arithmetic !
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Cells

Recall: OCn = {(x1, · · · , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.

Definition

A cell is a pair c = (R, I ) of relations on {1, · · · , n}.
We associate to it a topological space |c | ⊆ OCn

which points are (x1, · · · , xn) ∈ OCn such that

• for all (i , j) ∈ R, Re(xi ) < Re(xj),

• for all (i , j) ∈ I , Im(xi ) < Im(xj),

Notation

• i→j ⇐⇒ (i , j) ∈ R

• i→j ⇐⇒ (i , j) ∈ I
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Examples

c = (∅,∅): |c | = OCn,



Properties of cells

Empty cells

A cell is empty if and only if there is a cycle

in R or in I .

Convex cells

A (non-empty) cell is convex if and only if for

all i , j ∈ {1, · · · , n}, either i→∗j or j→∗i or

i→∗j or j→∗i . We call this graph property

“monochromatic semi-connectedness” (m.s.c.

for short).

Intersection of cells

Given c = (R, I ) and c ′ = (R ′, I ′) two cells,

the space associated to (R ∪ R ′, I ∪ I ′) is

|c | ∩ |c ′|.

Examples



Step 1: compute a sequence of cells

Path to cells

Input: ζ (represented by tubular neighborhoods)

Output: a sequence of m.s.c. cells c1, · · · , cr such that

there exists 0 = t0 < · · · < tr = 1 and for any

s ∈ [ti−1, ti ], ζ(s) ∈ ci
Idea:

• Start with an initial m.s.c cell c containing ζ(0).

• Associate to each edge a time of validity.

• When a relation expires, update it using sep and

repair m.s.c.

• Repeat
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Step 2: linearize ζ

Definition

Let ρ, ι ∈ Sn. We define

ωρ,ι = (ρ(1) + iι(1), · · · , ρ(n) + iι(n)) ∈ OCn

ω(1 2)(3 4),(1 4 3) =

· •1 · ·
· · •4 ·
•2 · · ·
· · · •3

Linearization of ζ

For each ci , ci+1, we compute ρ, ι such that ωi = ωρ,ι

lies in the intersection ci ∩ ci+1 (Hint: total order

extending R and I ).

The linear interpolation of the ωi

is homotopic to ζ. Why ? m.s.c cells are convex !
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Step 3: decomposition of the linearization

Reduction

• Computing the braid associated to the whole

linearization or to each piece and concatenating

the results is equivalent

• Assume ωρ,ι and ωρ′,ι′ both lie in a m.s.c cell

c = (R, I ). It means that ρ, ρ′ extend R and ι, ι′

extend I . So ωρ,ι′ also lies in c!

• We compute the braid of ωρ,ι → ωρ,ι′ then the

braid of ωρ,ι′ → ωρ′,ι′
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Step 3: decomposition of the linearization

ωρ,ι → ωρ,ι′

The induced braid is trivial, as the real part

of the strands is constant.
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Step 3: decomposition of the linearization

ωρ,ι → ωρ,ι′

The induced braid is trivial, as the real part

of the strands is constant.

ωρ,ι′ → ωρ′,ι′

Let ρ′ρ−1 = si1 · · · sir be a decomposition in

elementary transpositions. Output

σε1
i1
· · ·σεr

ir
with ε1, · · · , εr ∈ {±1}

computed using ι′.



Conclusion


